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Gesture recognition on the back surface of mobile phone, not limited to the touch screen, is an enabling Human-Computer
Interaction (HCI) mechanism which enriches the user interaction experiences. However, there are two main limitations in
the existing Back-of-Device (BoD) gesture recognition systems. They can only handle coarse-grained gesture recognition
such as tap detection and cannot avoid the air-borne propagation suffering from the interference in the air. In this paper, we
propose StruGesture, a fine-grained gesture recognition system using the back of mobile phones with ultrasonic signals. The
key technique is to use the structure-borne sounds (i.e., sound propagation via structure of the device) to recognize sliding
gestures on the back of mobile phones. StruGesture can fully extract the structure-borne component from the hybrid Channel
Impulse Response (CIR) based on Peak Selection Algorithm. We develop a deep adversarial learning architecture to learn
the gesture-specific representation for robust and effective recognition. Extensive experiments are designed to evaluate the
robustness over nine deployment scenarios. The results show that StruGesture outperforms the competitive state-of-the-art
classifiers by achieving an average recognition accuracy of 99.5% over 10 gestures.
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1 INTRODUCTION
Gesture recognition is a basic HCI mechanism for electronic devices in Internet of Things (IoT), especially for

smartphones and tablets. With the wide-deployment of the touch screens, gesture input is mainly limited to the
front screen of mobile devices. However, finger input on the touch screen may lead to some cumbersome user
experiences. For example, touch screen is not working well when the user’s finger is sweaty. Moreover, user’s
finger often has the occlusion problem [31], i.e., the surface of the finger often blocks the view of some content
displayed on the touch screen during the interaction process.
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Fig. 1. Ultrasound propagation paths on the back of phone. All paths can be classified into structure-borne paths and
air-borne paths. For the sake of simplicity, we called the received signals from the mic1 “the farther input” while the “closer
input” for the mic2. The dual received signals, i.e., signals received by two microphones, are used to achieve the accurate
sliding gesture recognition based on the structure-borne propagation only.

Back-of-Device (BoD) gestures (i.e., gestures on the back of smartphone) [22, 37] provide a new way of input
interface which addresses the above two problems. Additionally, BoD gestures can enrich the user experiences by
providing users with the back surface as a writing pad. Along this direction, there has been some considerable
work on BoD gestures. Existing works [6, 37] employ the common built-in sensors (e.g., microphone, gyroscope
and accelerometer) to sense tap activity. They only focus on this coarse gesture due to the limited information
obtained from built-in sensors. Recent study [24] utilizes the sound properties to enable a fine-grained gestures
(e.g., swiping, scrolling) sensing system on the surfaces of commodity devices. However, this gesture recognition
system relies on the in-air propagation which can be easily interfered by other movements in the air.
As shown in Figure 1, sound signals transmit from the speaker to the microphone through more than one

path. All these paths can be classified into structure-borne paths, i.e., sound propagating through the structure of
the mobile phone, and air-borne paths, i.e., sound propagating through the air. Beyond the change of air-borne
propagation, structure-borne also has a corresponding change when the finger touches the back of mobile phone.
Specifically, structure-borne CIR can quantitatively describe the detailed changes relative to the structure-borne
propagation.

In this paper, we propose StruGesture, a fine-grained gesture recognition system on the back surface of mobile
devices using ultrasonic signals. Our key idea is to leverage the properties of structure-borne CIR to serve as
features for gesture recognition. We firstly sketch the structure-borne CIR model, which builds the correlation
between the structure-borne propagation and the sliding gestures. Next, we design the whole process from
transmitting to receiving signals using built-in speaker and microphones. Then, we focus on extracting structure-
borne component from raw CIR measurement and denoise the result by performing differential operation. At
last, we propose a novel classification framework based on adversarial deep learning to guarantee the excellent
recognition performance.

To handle the gesture recognition on the back of mobile phones, two main challenges must be addressed. The
first challenge is to derive the structure-borne component corresponding to the targeted gestures among all
propagation. While traditional gesture recognition systems are mainly based on air-borne propagation [12, 24], it
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is challenging to extract pure structure-borne component from the hybrid CIR signals. To overcome this challenge,
we firstly design a Zadoff-Chu (ZC)-based OFDM signal to get CIR sequence with sub-sample resolution. We
expect that the more precise CIR can depict higher resolution of the propagation path information, which enables
extracting the structure-borne path component. Secondly, we propose a self-calibration scheme to combat the
ambiguity of the structure-borne and air-borne components based on their adjacent properties. In this way, the
structure-borne and air-borne components will be moved to the adjacent locations. We then propose a peak
selection algorithm based on the amplitude relation and sequential order to determine the air-borne peak and
structure-borne peak, respectively. Based on the located structure-borne and air-borne peaks, we obtain the
air-borne direct component and the structure-borne component. Through the subsequent signal purification step,
the structure-borne component is singled out and the features related to gestures are extracted accordingly.
The second challenge is to eliminate the influence brought by inter-subject difference. Most of the existing

studies are focusing on the person dependent situation where the training set and testing set are collected
from the same subject. However, the real-world deployment requires person independent setting, in which the
training data are collected from a batch of subjects while the testing set from an unseen subject. To address
this challenge, we propose an end-to-end unified adversarial learning framework (Section 6) that can capture
distinctive gesture-specific representations while alleviating the inter-subject difference.
In summary, the main contributions of this work are highlighted as follows:
• To the best of our knowledge, this is the first structure-borne propagation (SBP)-based sliding gesture
sensing research on smartphones demonstrating accuracy and robustness advantage than alternative
approaches based on air-borne approaches.

• We propose a ZC-based OFDM de/modulation scheme to derive CIR measurement with much higher
resolution and lower time cost than most traditional de/modulation schemes. After deriving the precise
CIR measurement, we further put forward novel approaches, including self-calibration and peak detection,
to separate the structure-borne component from the hybrid CIR sequence.

• We propose a novel framework for discriminative gesture recognition via purified gesture-specific repre-
sentations that are learned through adversarial training.

• We design extensive experiments to evaluate our system. The results show that our framework outperforms
all the competitive cutting-edge counterparts. Moreover, our system shows appealing performance over 9
usage scenarios, which sheds the light for the practical applications in the future.

The whole paper is organized as follows: we propose the structure-borne propagation model which builds the
correlation between the structure-borne CIR and the sliding gestures in Section 3 . Section 4 mainly analyzes the
design flow of OFDM signal, which undergoes the modulation and demodulation steps at the transmitter and
receiver end. Based on the OFDM signal, Section 5 mainly describes the details to extract the structure-borne
component which is highly related with the sliding gestures. Section 6 proposes a novel end-to-end classification
framework to accurately recognize the user’s gesture based on the input structure-borne signals.

2 RELATED WORK
Existing works on gesture sensing can be divided into three categories: BoD Gesture Sensing, Non-BoD Gesture

Sensing and In-air Gesture Sensing.

2.1 BoD Gesture Sensing
Gestures performed on the back of devices are popular ways to enrich user experiences [6, 11, 24, 32, 34, 37].

Buit-in camera can be used to detect the finger movement on the back of mobile phone. LenGesture [34] studies
the feasibility of detecting the finger movement just above the rear camera. Back-Mirror [32] uses smartphone
with additional mirror, which reflects the back surface to the rear camera, to capture gestures with high resolution
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in a large range. However, these schemes either have limitation of sensing range or require additional hardware to
extend sensing area. Built-in sensors (e.g., accelerometer, gyroscope, etc.) can also be used to sense tap movement
[6, 37]. However, the derived information from sensor readings is so limited that only coarse-grained gesture (i.e.,
tap) can be sensed. A capacity-based prototype is developed in [11], which sense user’s touch input. However,
this system not only requires hardware modification but also needs an extra capacitive touch controller attached
to the user’s arm, which is annoying to users. In addition, Vskin [24] performs fine-grained swiping gesture
sensing on the back of smartphone. However, the swiping gesture sensing scheme is based on the air-borne
propagation, which is easily interfered by nearby noisy movements in the air. For example, the adjacent finger’s
irrelevant movement will lead to the sharp degradation of interaction accuracy.

2.2 Non-BoD Gesture Sensing
Beyond BoD interaction, several gesture sensing schemes based on different types of surfaces have been

proposed [5, 8, 13, 14, 27, 38]. Vibration-based [13, 14] schemes enable tapping location or gestures-based authen-
tication on solid-surface with high accuracy. However, they are deployed on the dedicated device. ForcePhone
[27] explores force-sensing capability to the touch screen of mobile phone. However, it uses linear chirp signal to
sense force and touch relying on the magnitude change because of structure-borne propagation. It can not capture
the fine-grained channel state information through the captured magnitude measurement at a low sampling
rate. In contrast, our system use OFDM signals to derive complex signals, which includes the magnitude and
phase information of multiple propagation paths. In this way, our system studies fine-grained sliding gesture
recognition system rather than squeezing detection scheme[27]. TapSense [8] utilizes the tapping sound to
recognize the touch movement on the touch screen. SoundWrite [38] and Ipanel [5] both capture the acoustic
signals generated by sliding of fingers on the table for sensing. However, these audible sound based recognition
systems are easily influenced by ambient sound noise.

2.3 In-air Gesture Sensing
Sensing in-air gestures has been widely studied in many fields (e.g., Camera signal, Radio Frequency (RF) signal

and ultrasound signal).
As for Camera signal, Kollorz et al. [10] presents a camera-based approach for gesture classification using x-

and y-projections of the image and optional depth features. Wang et al. [28] presents a superpixel-based hand
gesture recognition system with Kinect depth camera.

As for RF signal, prior works [2, 26, 29, 35] take advantages of the fine-grained Channel State Information (CSI)
available from WiFi signals to track or recognize gestures with high accuracy. WiGest uses the changes in WiFi
RSSI through three wireless links to recognize a special set of gestures, and achieves a recognition accuracy of
96% [1]. WiDraw applies Angle-Of-Arrival (AOA) measurements to reach the resolution of 5 cm of tracking [25].
As for ultrasound signal, several ultrasound based gesture recognition schemes have been proposed [3, 4, 7,

16, 17, 19, 23, 36]. AudioGest [19], SoundWave [7] and Multiwave [17] utilize Doppler effect to recognize small
set of predefined gestures. LLAP [30] use continuous wave to track hand with high accuracy. FingerIO [15]
transmits OFDM modulated frames to locate moving finger. Strata [20] tracks phase changes at different time
delays corresponding to fine-gained hand locations.

However, gestures in all the aforementioned sensing systems, especially camera-based system, are performed at
remote areas away from sensing devices. Furthermore, RF and Ultrasound signal based propagation is vulnerable
to other irrelevant movement in the air. In comparison, our system just uses the structure-borne sound signals to
sense gestures performed on the back of the mobile devices, which is immune to in-air interference.
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Fig. 2. Structure-borne path’s change under the pressure. The vibrating phone caused by sound propagation is considered a
spring mass damper system. When a force 𝐹𝑝 is applied on the surface, there is a corresponding displacement 𝑆 . Meanwhile,
the structure-borne path will have a relevant change from path A to path B.

3 STRUCTURE-BORNE PROPAGATION MODEL
In this section, we focus on describing the theoretical model of structure-borne propagation regarding the

gesture performing on the back surface of mobile phone.

3.1 Model Description
While the user touches the surface of mobile phone as shown in Figure 1, the sound signal will encounter the

finger. Then, part of signal will be directly absorbed by the finger and other parts will propagate back to the
microphone along with the reflection path [14]. Therefore, the touching location information is related to the
reflection path during the whole structure-borne propagation, which demonstrates the high correlation between
the structure-borne reflection path change and gestures.
Furthermore, the finger pressure will also affect the structure-borne propagation. We give the Figure 2 to

understand this phenomenon. The vibrating phone caused by sound propagation is considered a spring mass
damper system [14, 27]. When the sound wave is played at the speaker, the phone can vibrate with stable
amplitude 𝑆0 with effective spring coefficient 𝐾0. When there is an external force due to finger pressure, the
vibration amplitude will be reduced according to conservation of energy, which can be described as:

1
2𝐾0𝑆

2
0 =

𝐹𝑝

𝑆0 − 𝑆
𝑆2 (1)

The vibration displacement 𝑆 is corresponding to the applied force 𝐹𝑝 by the touching finger. Upon that the
structure-borne path will have a relevant change (e.g., from path A to path B as shown in Figure 2). Note that the
path change is obviously highly correlated with the touching location. Therefore, the ultrasonic signal’s structure-
borne propagation can be utilized as suitable feature to discriminate different sliding gestures accordingly.

Assume the baseband signal at time 𝑡 is 𝑠 (𝑡) and it will be up converted with the carrier frequency 𝑓𝑐 followed by
transmitting. According to Linear Time Invariant system (LTI) theory, the received baseband signal corresponding
to propagation path 𝑖 can be represented as: 𝛼𝑖𝑆 (𝑡−𝜏𝑖 −𝜏0)𝑒−𝑗2𝜋 𝑓 (𝜏𝑖+𝜏0) , where 𝜏𝑖 and 𝛼𝑖 are the corresponding time
delay determined by distance of the travel path and amplitude representing the signal attenuation, respectively.
𝜏0 denotes the initial time delay due to the hardware imperfectness, which can be mainly divided into two parts:
the delay from the audio file to the playing sound at the speaker side and the delay from the recording sound to
the audio file at the microphone side. Note that this delay is constant when the system is always working while
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(a) Clockwise gesture on the upper surface (b) Clockwise gesture in the air

(c) Clockwise gesture on the bottom surface (d) Double-click gesture on the surface
Fig. 3. CIR patterns under different scenarios

random for the new restarts. Since the sound wave is a longitudinal wave[21] which can propagate through air
and structure, all propagations can be further grouped into air-borne and structure-borne propagation as shown
in Figure 1. The received baseband signal can be represented as:

𝑅(𝑡) =

𝐿𝑎∑
𝑚=1

𝛼𝑚𝑆 (𝑡 − 𝜏𝑚 − 𝜏0)𝑒−𝑗2𝜋 𝑓𝑐 (𝜏𝑚+𝜏0 ) +
𝐿𝑠∑
𝑛=1

𝛼𝑛𝑆 (𝑡 − 𝜏𝑛 − 𝜏0)𝑒−𝑗2𝜋 𝑓𝑐 (𝜏𝑛+𝜏0)

= 𝑆 (𝑡) ⊛ (𝐻𝑎 (𝑡) + 𝐻𝑠 (𝑡)) (2)

where ⊛ denotes the convolution operation and 𝐻𝑠 (𝑡) is the CIR relative to structure-borne propagation. Hence,

𝐻𝑠 (𝑡) =

𝐿𝑠∑
𝑛=1

𝛼𝑛𝛿 (𝑡 − 𝜏𝑛 − 𝜏0)𝑒−𝑗2𝜋 𝑓 (𝜏𝑛+𝜏0) (3)

where 𝛿 (𝑡) is Dirac’s delta function. This indicates that the structure-borne CIR can quantitatively describe the
characteristics of structure-borne propagation including time delay and amplitude.

3.2 Model Verification
Since the structure-borne and air-borne direct path are both the shortest paths, the sound energy corresponding

to these two paths are strongest. Additionally, since the sound speed in solid is 100× faster than in air, we can
easily locate the structure path along the CIR time delays. Figure 3 shows the amplitude of CIR estimations along
the timeline when the finger is sliding on the back surface and in the air, respectively. For the vertical axis, the
delay point denotes the path length from the speaker to the microphone. The hot region indicates a peak at
the corresponding path length in the CIR estimation. For convenience, we define the delay point of 0 to be the
structure-borne path. We then conduct four representative experiments to verify the structure-borne propagation
model. We firstly use the finger to slide on the upper surface of the phone with the clockwise gestures. From
Figure 3(a), we observe that CIR amplitude is changing during sliding period (0.7 ∼ 1.4𝑠) and delay interval
(−10 ∼ 10). Note that the delay interval (−10 ∼ 10) is mainly dominated by the structure-borne propagation.
Compared with the sliding movement on the surface, the same gestures in the air (i.e., 1 cm above the surface)
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(b) CIR profile with frame size of 960
Fig. 4. CIR profile of the closer input with different frame sizes

has a negligible effect on the structure-borne component, as shown in Figure3(b). To demonstrate the stability of
the pattern, we slide on the bottom surface with the same gesture. From Figure3(c), we observed that the pattern
during the sliding period 0.9 ∼ 1.9𝑠 is similar to that in Figure 3(a) since they both have a similar arc-shaped
pattern for the hottest region. To study the diverse pattern corresponding to various gestures, we perform the
double-click gesture shown in Figure3(d), which implies the uniqueness of the specified gesture.

4 ZC-BASED OFDM DESIGN
To capture the fine-grained channel information, we need to derive not only the amplitude change but also

the phase change. This is because the only amplitude between the adjacent samples may have a little change so
that it is difficult to capture the fine-grained movement with the amplitude information, such as ForcePhone
[27]. As we know, traditional OFDM system provides us the channel information with the amplitude and phase
[15]. However, it is still not sufficient to achieve fine-grained sensing due to the randomness of the transmitted
sequence. Additionally, the time cost is high due to series of complicated operations, for example, up-conversion,
down-conversion, and low-pass filter. In this section, we focus on designing a ZC-based OFDM system to address
thse two issues.

4.1 Parameter Analysis
Our system utilizes the transmission of frequency narrowly ranging in 17 − 23 𝑘𝐻𝑍 (i.e., 𝐵 = 6 𝑘𝐻𝑧) with the

central frequency 20 𝑘𝐻𝑧 and sampling rate 48 𝑘𝐻𝑧, which is a inaudible to most people [18]. The transmission
consists of consecutively repeated frames. When the microphone receives the signal, it derives the time delay
through the circular shift.

The selection of frame size,𝑁 , should satisfy the following requirements from both the technical and engineering
aspects. For the aspect of technology, the candidate frame size should be designed to reduce the surrounding
interference as much as possible. This is because the larger frame size can reduce the disturbance of echoes
from larger distance according to the time shifting theorem. To demonstrate this, we give Figure 4 to show the
difference in CIR profile for the frame size 𝑁 = 240 and 𝑁 = 960, respectively. We first put the mobile phone on
an empty desktop. We then move an iron plate from 30 𝑐𝑚 to 110 𝑐𝑚 away from the mobile phone. For the frame
size of 𝑁 = 240, the reflected signals corresponding to 30 𝑐𝑚 and 110 𝑐𝑚 have considerable overlap, as shown in
Figure 4(a). This is because the sensing range for 𝑁 = 240 is within 𝑐 · 𝑁 /(2 · 𝐹𝑠 ) = 85.8 𝑐𝑚. The reflected signals
outside this range will be superimposed on the target signals. In contrast, the frame size of 𝑁 = 960 implies that
the sensing range is within 343 𝑐𝑚 and the same previous reflection signals can be well separated, as shown in
Figure 4(b). Meanwhile, the weak reflected signals beyond this range is negligible due to energy attenuation.
Overall, we choose 𝑁 = 960, which is sufficient to meet the requirements of our system.

For the aspect of engineering, the candidate frame size should be firstly integer multiples of the period of the
transmitted passband cos/sin signals (i.e., 𝑟𝑒𝑝 ( 𝑁 ·𝑓𝑐

𝐹𝑠
, 1) = 0) so that both the transmitted and received signals can

be viewed as the continuous periodical signals. The amount of timing delay corresponding to the static target

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 82. Publication date: June 2021.



82:8 • Wang et al.

100 200 300 400 500 600 700 800 900
 Sample index

0

0.5

1

 M
ag

ni
tu

de

 OFDM

Mixed peak

(a) Traditional OFDM

100 200 300 400 500 600 700 800 900
 Sample index

0

0.5

1

 M
ag

ni
tu

de

 FMCW

Structure-borne peak
Air-borne peak

(b) FMCW

100 200 300 400 500 600 700 800 900
 Sample index

0

0.5

1

 M
ag

ni
tu

de

 VSkin

Structure-borne peak
Air-borne peak

(c) VSkin

100 200 300 400 500 600 700 800 900
 Sample index

0

0.5

1

 M
ag

ni
tu

de

 StruGesture

Structure-borne eak
Air-borne eak

(d) StruGesture
Fig. 5. Temporary CIR profile comparison via typical demodulation schemes for the farther input signals

Traditional-OFDM FMCW VSkin StruGesture
Sumsang S7 7.01𝑚𝑠 8.29𝑚𝑠 15.65𝑚𝑠 3.56𝑚𝑠
Nexsus 6 8.42𝑚𝑠 9.23𝑚𝑠 15.91𝑚𝑠 4.35𝑚𝑠

Table 1. Time consumption comparison between typical demodulation schemes

can be, therefore, regarded as constant. Secondly, to enable StruGesture on most mobile devices, the frame size
should be the combination of radix-3, radix-5, radix-2 so that Inverse Fast Fourier Transform (IFFT) and Fast
Fourier Transform (FFT) can be calculated.

4.2 Modulation Process
For the modulation process, we firstly choose temporal sequence with the size of 𝑁𝑐 = 𝐵 ·𝑁

𝐹𝑠
+ 1 to satisfy the

bandwidth of modulated signal. For example, with the sampling rate 𝐹𝑠 = 48 𝑘𝐻𝑧 and frame size of 𝑁 = 960, we
have 𝑁𝑐 = 81. Furthermore, the temporal sequence with good auto-correlation property is provably optimal to
derive the CIR with high resolution. We therefore choose ZC sequence, which meets the requirement [24], as the
temporal sequence. Secondly, we transform the temporal sequence into frequency sequence 𝑋 [𝑛] by performing
𝑁𝑐 -point FFT operation. Thirdly, we rearrange the frequency points to 𝑋𝑠 [𝑛] by performing FFT shift so that the
DC component is at center of the sequence. Fourthly, we copy the rearranged sequence to the positive frequency
part of 𝑋 [𝑛] with length 𝑁 . We then copy the conjugate of 𝑋𝑠 [𝑛] to the negative part of 𝑋 [𝑛]. The rest part
of 𝑋 [𝑛] is padded with zero. Finally, we perform N-point IFFT on the zero-padding complex valued sequence
𝑋 [𝑛] to derive the real-valued transmitted sequence 𝑥 [𝑛]. Since each frame fully contains multiple periods of the
passband signals, the transmitting sequence can be generated and played on most mobile devices.

4.3 Demodulation Process
At the receiver side, we derive the CIR by leveraging frequency domain multiplication instead of traditional

de/modulation schemes, such as [15, 24, 27], to significantly reduce the time cost. We firstly segment the received
sequences into the frames of length𝑁 . Secondly, we perform an N-point FFT on each frame to derive the frequency
domain representation 𝑌 [𝑛]. Thirdly, we extract the passband frequency components corresponding to 𝑋𝑠 [𝑛] and
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Fig. 6. CIR profile before and after self-calibration

divide it by the transmitted frequency sequence 𝑋𝑠 [𝑛] to get the Channel Frequency Response (CFR) (i.e., 𝐻 [𝑛]).
We rearrange the frequency domain sequence and perform zero-padding to expand the frequency bandwith
length. The length of sequence is expanded from 𝑁 to 𝑁𝑒 and CFR is transformed to 𝐻 [𝑛], 𝑛 = 0, . . . 𝑁𝑒 − 1.
We set 𝑁𝑒 = 4𝑁 , which means the resolution is four times than that of the raw sequence. Finally, we perform
𝑁𝑒 -point IFFT on the zero-padding sequence to get the CIR at time 𝑡 as follows:

ℎ𝑡 [𝑛] =
𝐿𝑠+𝐿𝑎∑
𝑖=1

𝑠𝑖𝑛𝑐 (𝑛 − 𝑘𝑖 )𝑒−𝑗2𝜋𝑘𝑖 𝑓𝑐𝑁 /(𝑁𝑒 𝑓𝑠 ) , 𝑛 = 0, . . . 𝑁𝑒 − 1 (4)

According to time-frequency characteristic [9], the good auto-correlation of ZC sequence gives an ideal CIR with
the limited bandwith.

4.4 The Novelty and Advantages
This section’s key novelty is on proposing a ZC-based OFDM scheme to separate the structure-borne and

air-borne components. The main advantages of our ZC-based OFDM scheme are from two aspects. Firstly, the
ZC-based OFDM scheme has a much higher resolution than traditional de/modulation schemes, e.g., traditional
OFDM [15] and FMCW [27]. We use a mobile phone on the empty desk to explore the resolution of the four
de/modulation schemes above. As shown in Figure 5(a), the traditional OFDM scheme is insufficient to separate
the structure-borne and air-borne peaks based on the ordinary sequence. There is only one mixed peak along
with the temporary CIR profile, and the values of other points are relatively large due to the poor auto-correlation.
FMCW signals are similar to OFDM signals even though the two peak points are slightly separated, as shown in
Figure 5(b). In contrast, these peaks can be well distinguished with ZC-based OFDM and VSkin signals [24] due
to the good auto-correlation property, as shown in Figure 5(c) and Figure 5(d). Additionally, the values of other
points, which indicate no propagation, are far smaller than OFDM and FMCW signals.
Secondly, ZC-based OFDM scheme has a much less computational complexity than the aforementioned

de/modulation schemes, as shown in Table 1. Instead of using the time domain down-conversion as illustrated in
[15, 24, 27], we leverage the only frequency-domain shift to perform the time-domain down-conversion, which
can significantly reduce the computational cost. Additionally, while VSkin uses the time-domain correlation to
get CIR, we only use the frequency-domain multiplication to ensure the equal resolution and further reduce the
time complexity.

5 STRUCTURE-BORNE COMPONENT MEASUREMENT

5.1 System Self-calibration
As shown in Figure 1, among all the multi-path propagation signals, there are air-borne signals (signals

propagated in the air) and structure-borne signals (signals propagated through the solid). These two types of
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ALGORITHM 1: Peak Selection
Input: Calibrated CIR sequence ℎ̂𝑡 [𝑘]
Output: Selected peak points

1 Locate all the peaks (local maximum point);
2 Sort the peaks by their amplitude |ℎ̂𝑡 [𝑘𝑖 ] |, 𝑖 = 1, . . . , 𝑁𝑝 :

3 |ℎ̂𝑡 [𝑘1] | >, . . . , > |ℎ̂𝑡 [𝑘𝑁𝑝
] |;

4 Initialization: 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1 ⇐ 𝑘1, 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2 ⇐ 𝑘1;
5 for 𝑖 = 2, . . . , 𝑁𝑝 do
6 if |𝑘𝑖 − 𝑘1 | < 𝑘𝑡ℎ𝑟𝑑 and ( |ℎ𝑡 [𝑘𝑖 ] |) > ℎ𝑡ℎ𝑟𝑑 then
7 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2 ⇐ 𝑘𝑖 ;
8 break;
9 end

10 end
11 Structure-borne peak ⇐ min[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2];
12 Air-borne peak⇐ max[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2];

signals are both further divided into: direct signals (signals propagated from the speaker to microphones through
LOS path) and indirect path (signals reflected by the object in the environment). As mentioned before, sound speed
in the solid is 100× faster than that in the air, which implies that the direct and indirect signals corresponding to
the structure-borne propagation will be mixed due to limited resolution. Conversely, they can be captured and
differentiated in the air. As we know, the direct path has the shortest path length among all air-borne propagation,
which indicates the lowest energy decrement and hence corresponds to a prominent peak in the CIR profile.
Similarly, the structure-borne propagation also has a mixed peak over the CIR profile theoretically. For the
sake of description, we use air-borne peak and structure-borne peak to denote the peak of air-borne direct
propagation and structure-borne propagation, respectively.

Through investigation, we find that most off-the-shelf mobile phones (Iphone series, Samsung series, etc.) have
at least one built-in speaker and two built-in microphones similar to the deployment in Figure 1, of which one
microphone is much closer to the speaker than the other. Our system is aimed at sensing the sliding gestures by
utilizing the stereo input (the closer input and the farther input).
For the closer input, due to the short distance between the speaker and the microphone, the air-borne peak

and the structure-borne peak will be mixed into the only peak, as shown in Figure 4. Therefore, it is easy to
determine the location of the mixed peak directly by searching the maximal peak.
For the farther input, the structure-borne and air-borne direct propagation are separate because of the large

propagation delay difference. However, we cannot directly identify the structure-borne and air-borne direct peak
due to the random initial propagation delay, as shown in Figure 6(a). To combat the ambiguity, we perform a
calibration scheme based on the property of adjacency with these two components. We firstly locate the maximum
peak point over the CIR profile. The selected peak point must corresponds to either structure-borne or air-borne
direct components. Once one of components is determined, the other is around it theoretically. Inspired by this,
we then shift the CIR sequence circularly until the maximum peak is at the central position as shown in Figure
6(b). The calibrated CIR is given by:

ℎ̂𝑡 [𝑘] = ℎ𝑡 [(𝑘 − (𝑁𝑒/2 − 𝑃)) mod 𝑁𝑒 ], 𝑘 = 0, . . . 𝑁𝑒 − 1 (5)

where 𝑃 = argmax
𝑘

(ℎ𝑡 [𝑘]) and notation 𝑘 represents the 𝑘-th delay point value relative to the calibrated CIR.

Note that although the time delay varies with the circular shifting, the relative relation between paths is retained.
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Fig. 7. The distribution of 200 samples with the ratio of the
2nd peak to the 1st peak

Fig. 8. The distribution of 200 samples with the ratio of the
maximal noisy peak to the structure-borne peak

5.2 Structure-borne Component Identification
To identify the structure-borne component, the first step is to use Algorithm 1 to select the peak points

corresponding to the structure-borne propagation and air-borne direct propagation. To select the exact peak
points, we firstly locate all the peaks from the calibrated CIR sequence ℎ𝑡 [𝑘], which are the points with local
maximum amplitudes. Subsequently, we sort peak points by their amplitude as the labels, i.e., 𝑖 = 1, . . . , 𝑁𝑝 , as
shown in Figure 6(b). Therefore, we get:

|ℎ̂𝑡 [𝑘1] | >, . . . , > |ℎ̂𝑡 [𝑘𝑁𝑝
] | (6)

We then initialize the highest peak as the 𝑐𝑎𝑛𝑑𝑖𝑐𝑎𝑡𝑒1 and 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2. Starting from the second highest peak, we
take out current peaks one-by-one in the descending order of amplitudes. If the interval between the current
peak with the highest peak is within 𝑘𝑡ℎ𝑟𝑑 and the current peak’s amplitude is larger than ℎ𝑡ℎ𝑟𝑑 , we treat this
peak as the 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2, and other peaks are removed meanwhile. We set the threshold 𝑘𝑡ℎ𝑟𝑑 to be 112 and ℎ𝑡ℎ𝑟𝑑
to be 0.8 × |ℎ̂𝑡 [𝑘1] |, where 112 implies that the largest distance between the speaker and microphone is within 20
𝑐𝑚 which satisfies most devices. Meanwhile, since the ratio of the structure-borne peak to the air-borne peak
is greater than 0.8, as shown in Figure 7, 0.8 × |ℎ̂𝑡 [𝑘1] | ensures that most noisy peaks are removed. Note that
if the speaker and microphone are very close to each other, 𝑐𝑎𝑛𝑑𝑖𝑐𝑎𝑡𝑒1 is equal to 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2 as illustrated in
Section 5.1. As we know, the received structure-borne signals are earlier than the air-borne signals because of
the higher speed. We thus get the structure-borne peak as min[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2] and air-borne peak as
max[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2].

Based on the located structure-borne and air-borne peaks, the interval of |𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1 −𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2| is filled
with the structure-borne component and air-borne direct component. Note that the air-borne direct component
is stable and entirely unrelated to the movement, it will be eliminated in the following step. Additionally, we
also select interval before the structure-borne peak, of which the amplitude is larger than empirical threshold
0.2 × |ℎ̂𝑡 [min[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2]] |, to include the majority of the structure-borne component. As shown
in Figure 8, since the ratio of the highest peak, which is among all noisy peaks before the structure-borne, to
the structure-borne peak is distributed in the range of [0.08, 0.18], 0.2 × |ℎ̂𝑡 [min[𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒1,𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒2]] | can
ensure that the noisy peaks before the structure-borne peak are all removed.

As shown in Figure 6(b), static components (including air-borne direct component and some structure-borne
static components) dominate the raw CIR, which result in difficulty in highlighting the signals relative with sliding
movements. We reduce the effect of static components by performing differential operation on complex-valued
CIR sequence instead of intuitive CIR amplitude. This is because the amplitude has a small change within a short
duration, the direct differential operation will remove most movement-related signals as well as the static signals.
In contrast, the difference of complex valued CIR retains the movement-related signals since the phase has a
obvious change with the same path length change. We give Figure 9 to illustrate the resulting performance of
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(a) Amplitude of raw CIR (b) Amplitude of differential CIR
Fig. 9. CIR comparison

signal purification. Compared with the amplitude of the raw CIR in Figure 9(a), the amplitude of differential CIR
is concentrated during the sliding period, i.e., 0.85 ∼ 1.85 𝑠 , as shown in Figure 9(b).

5.3 Sliding Detection and Segmentation
We use the property of structure-borne CIR regarding one microphone to detect the starting and ending

time of the movement. Note that we just consider the scenario with only one microphone because of the high
synchronization of two built-in microphones. Furthermore, air-borne CIR is mainly relative to the propagation
in the air as shown in Figure 3(b). This means irrelevant movements in the air can also trigger our system if
the detecting scheme is based on air-borne propagation. We thus attempt to detect the sliding movement by
analyzing the temporal CIR profile of certain structure-borne path in Figure 10(a). Following the differential
operation, we derive the subsequent result in Figure 10(b). We then apply a 6-th low pass Butterworth filter on
the raw differential CIR sequence to smooth the profile, in which cut-off frequency is set to 10 𝐻𝑧. This method
can effectively reduce detection failure because of short-term pause and high-frequency noises during the sliding
movement period. Next, we use a empirical threshold to determine the sliding moment or the silent moment.
Figure 10(b) shows that the sliding duration can be detected timely with high robustness. Based on the detection,
we regard the signal between the calculated starting and ending time as the final sliding segment.

5.4 Normalization
The normalization takes the segmented differential CIR signals and undergoes two steps. As we know, force

strength applied on the surface during the sliding period is different between different sliding times even for the
same person. In order to reduce the variation of force strength, we firstly normalize the segmented differential
CIR amplitudes, which are realized by dividing by the maximum CIR amplitude over each segmented duration. In
this way, we can reduce the force strength with different time and retain the diversity corresponding to varied
delays simultaneously.

Second, we normalize the segmented duration so that all signals have the same length. In order to remain the
intrinsic variation of each segment, we just pad zeros at the end. In this way, we pad all segments into the same
length.

5.5 The Novelty and Advantages
This section’s key novelty is to identify the structure-borne and air-borne components for each independent

microphone based on the systematic approaches, including self-calibration and peak detection. In comparison,
previous work [24] proposes to locate the structure-borne peak and air-borne peaks for the farther microphone
with the help of the closer microphone. Additionally, this system requires that one of the microphones must be
very close to the speaker, which limits its generalization significantly.
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Fig. 10. Temporary CIR profile before and after differential operation

6 GESTURE RECOGNITION
We propose a novel end-to-end classification framework to accurately recognize the user’s gesture based on

the input structure-borne signals. In this section, we firstly present the overview of our approach along with the
motivation, then report each component in detail.

6.1 Classifier Overview
One major challenge preventing precise gesture classification is the signal corruption. In specific, the acoustic

signals contains not only gesture-specific information but also user-specific information. We attempt to extract
gesture-specific information while eliminating the user-specific information for more robust and effective gesture
recognition. The fundamental idea of this model is to decompose the acoustic data into two parts: one part is rich
of gesture patterns but insensitive to the user while another part includes user-related information but insensitive
to the gesture. Our target is to extract the gesture-specific representations by purifying the acoustic data. Then,
the extracted gesture-specific representations are used to train a powerful classifier for downstream recognition.
We propose a deep adversarial learning algorithm in order to learn pure gesture-specific representations (as

shown in Figure 11), which is composed of three crucial components: signal decomposition, user-specific classifier,
and gesture-specific classifier.

Firstly, the input signals are decomposed into the user and gesture representations corresponding to the user
and gesture information, respectively. Then, the two latent representations are used to reconstruct the input
acoustic signals. If the reconstructed signals are equal to the input signals, we regard the learned user and gesture
representation as effective features of the decomposed structure-borne signal.
Meanwhile, we design a gesture-specific classifier following the gesture representation for purification. In

detail, the classifier aims to recognize the gesture based on the learned gesture representation. If the classifier
could achieve competitive performance (i.e., has a low recognition error), we believe that the learned gesture
representation contains abundant of gesture-related information. Similarly, a user-specific classifier is designed
to purify the user representation. Please note, in the testing stage, the input signals will only be processed by the
well-trained signal decomposition and gesture-specific classifier to recognize the gesture. In other words, the
user-specific classifier is not used in testing.

6.2 Signal Decomposition
This component receives the structure-borne signals and decompose them into gesture-specific representation

and user-specific representation. We denote the input signals by S = {𝑺𝒊 ∈ R𝑀×𝑁 }. A certain sample 𝑺𝒊 has𝑀
detailed coefficients and 𝑁 time delays. Then we have:

S = U + G (7)

where U = {𝑼𝒊 ∈ R𝑀×𝑁 } denotes the set of user-specific component while G = {𝑮𝒊 ∈ R𝑀×𝑁 } denotes the set of
gesture-specific component.
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Fig. 11. The proposed gesture recognition framework. In the training stage, the received structure-borne signals are firstly
fed into the signal decomposition component in order to extract the gesture and user presentation. The latent representations
are sent to the gesture-specific and user-specific classifiers simultaneously. In the testing stage, the input signals will only be
processed by the well-trained signal decomposition and gesture-specific classifier to recognize the gesture.

However, in the signal decomposition procedure, theU and G cannot be directly calculated through traditional
methods. Thus, we propose a novel deep learning-based decomposition model via adversarial learning. Although
the input signals have temporal dependencies, our preliminary results show that convolutional layers achieve
similar performance with recurrent layers (CNN: 92.6%; RNN: 91.7%) but cost much shorter training time (CNN:
18 𝑠 ; RNN: 160 𝑠 per epoch). A potential reason is that our data has a large number of time steps (126 time slices),
which will require massive computing resources if using RNN. Thus, we decide to use convolutional layers to
perform signal decomposition. The 𝑺 is transformed into a latent space through convolutional operation followed
by a max-pooling layer1:

�̄� = 𝑅𝑒𝐿𝑈 (𝒘𝒈 ⊛ 𝑺 + 𝒃𝒈), (8)

�̄� = 𝑅𝑒𝐿𝑈 (𝒘𝒖 ⊛ 𝑺 + 𝒃𝒖) (9)

1For simplify, we ignore the sub script.
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(a) Front side (b) Back side

Fig. 12. Experimental setup

where �̄� ∈ R𝐽 ×𝐾×𝐻 and �̄� ∈ R𝐽 ×𝐾×𝐻 denote the latent gesture and user representation, respectively. The 𝐻
denotes the number of convolutional filters. The𝒘𝒈, 𝒃𝒈,𝒘𝒖, 𝒃𝒖 represent trainable weights and biases.

Then, in order to reconstruct 𝑺 based on the learned latent representations, we have deconvolutional operations:

𝑮 = 𝑅𝑒𝐿𝑈 (𝒘 ′
𝒈 ⊛ �̄� + 𝒃 ′𝒈), (10)

𝑼 = 𝑅𝑒𝐿𝑈 (𝒘 ′
𝒖 ⊛ �̄� + 𝒃 ′𝒖) (11)

where 𝑮, 𝑼 ∈ R𝑀×𝑁 represents the decomposed gesture and user related signals, which have the same shape
with the input acoustic signal 𝑺 . The reconstructed signal 𝑺 ′ ∈ R𝑀×𝑁 :

𝑺 ′ = (𝑮 + 𝑼 )/2 (12)

To guarantee the decomposition performance and separate the useful gesture-related information while eliminat-
ing the inter-user noise, we force the reconstructed signal 𝑺 ′ to approximate the original signal 𝑺 by minimizing
the Euclidean distance between them. In specific, the reconstruction loss function of signal decomposition
component is measured:

L𝑆𝐷 =
𝑺 − 𝑺 ′


2 (13)

6.3 Gesture- and User-specific Classifiers
The architectures of the gesture-specific and user-specific classifiers are highly similar. Here, we take the former

as an example for detailed explanation. Convolutional Neural Network (CNN) has been widely used in research
areas such as computer vision and natural language process for the excellent spatial feature learning ability. We
design a CNN to automatically extract the distinctive information from the received gesture representation �̄�
which has shape [𝐽 , 𝐾, 𝐻 ]. The output of the classifier is the gesture label of input acoustic signal. As shown in
Figure 11, the gesture-specific classifier contains three convolutional layers where each followed by a max-pooling
layer, a flatten layer, two fully-connected layers (FC) and an output layer.
The core data flow of the classifier can be formulated as:

𝑪 𝒊 = 𝑅𝑒𝐿𝑈 (𝒘 𝒊
𝒈 ⊛ 𝑷 𝒊−1 + 𝒃 𝒊𝒈), 𝑖 ∈ {1, 2, 3} (14)
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Fig. 13. Ten gestures used in our system. All volunteers are asked to perform these 10 gestures and repeat 100 times with
index finger. Note that these figures are only the schematic plot. The experimental setup will be introduced in Section 7.1.

where 𝑪 𝒊 and 𝑷 𝒊 denote the 𝑖-th convolutional and pooling layer, respectively. If 𝑖 = 1, 𝑷0 = �̄�; otherwise, the
pooling layer can be measured by:

𝑷 𝒊
𝒖 =𝑚𝑎𝑥

𝑢∈U
{𝑪 𝒊

𝒖}, 𝑖 ∈ {1, 2, 3} (15)

whereU represents the max-pooling perception field and 𝑢 denotes the 𝑢-th element.
The third pooling layer 𝑷3 is flattened to 1-D vector 𝑭 0 and then fed into the fully-connected layers:

𝑭 𝒊 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 (𝒘 𝒊
𝒇 𝑭

𝒊−1 + 𝒃 𝒊𝒇 ), 𝑓 ∈ {1, 2, 3} (16)

where 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 denotes the activation function and 𝑭 𝒊 denotes the 𝑖-th FC layer. The learned 𝑭 3 represents the
probability of each gesture category.

The classifier receives the learned �̄� and produces the predicted gesture𝒚𝒈 (i.e.,𝒚𝒈 = 𝑭 3). We use cross-entropy
function to measure the loss:

L𝑔 = −
𝐶∑
𝑐=1

(𝒚𝒈,𝒄𝑙𝑜𝑔( ˆ𝒚𝒈,𝒄 )) (17)

where 𝒚𝒈 and 𝐶 denote the ground truth of gesture and the overall category of gestures, respectively.
Similarly, we can calculate the loss function of the user-specific classifier L𝑢 :

L𝑢 = −
𝐶∑
𝑐=1

(𝒚𝒖,𝒄𝑙𝑜𝑔( ˆ𝒚𝒖,𝒄 )) (18)

where 𝒚𝒖 and 𝒚𝒖 denote the ground truth and predicted labels of user, respectively.

6.4 Training Details
In the proposed approach, we have three loss functions: the reconstruction loss L𝑆𝐷 in signal decomposition,

the classification loss L𝑔 in gesture-specific classifier, the classification loss L𝑢 in user-specific classifier. The
reconstruction loss L𝑆𝐷 is expected to guarantee the combination of the gesture- and user-representations (i.e., �̄�
and �̄� ) can approximate the input acoustic signal 𝑺 , but does not concern whether the decomposed representations
informative or not. In contrast, the classification loss L𝑔 and L𝑢 target the informative of the decomposed �̄� and
�̄� but don’t care whether they can reconstruct 𝑺 perfectly.

Thus, we propose an adversarial training strategy to jointly train both two counterparts:

L = 𝛼L𝑆𝐷 + 𝛽 (L𝑔 + L𝑢) (19)
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Fig. 14. Accuracy for different algorithms under PD
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Fig. 15. Accuracy for different algorithms under PSD

where 𝛼 and 𝛽 and trainable weights in order to adjust the importance of signal decomposition component and
the user/gesture-specific classifier. The 𝛼 and 𝛽 are both initialized as 0.5 and will be automatically adjusted and
converged to trade-off point based on back-propagation of the loss function. The above equation can make sure
that the two opposite counterparts can work on the gradient at the same time and converge to a trade-off position
which can balance the reconstruction performance and the informative of the decomposed signals. Then, since
the gesture-specific classifier is the most crucial component in this approach, we train the L𝑔 one more time in
order to raise its priority. To sum up, in each training epoch, the L and L𝑔 are optimized one time in turn. We
adopt the Adam optimizer with learning rate 𝑒−4 for both loss functions. The algorithm is trained for 300 epochs.
A dropout layer with 0.8 keep rate is added to the flatten layer in both classifiers in order to prevent overfitting.

6.5 The Novelty and Advantages
To the best of knowledge, we are the first to purify signal (such as gesture information) by combining signal

decomposition and adversarial training. Our adversarial training strategy allows the classifier to focus on gesture-
specific information and alleviate the influence caused by personal status (such as age and sex). Our classifier can
be easily extended to mitigate other noise such as the influence caused by diverse phone types/brands (different
hardware like transmitter and receiver).
In addition, the structure used in our classifier are fundamental neural network layers (e.g., convolutional,

pooling, fully-connected layers): this is our advantage that achieves competitive performance using basic and
elegant architecture. If necessary, it is easy to increase the depth of our framework in follow-up studies (i.e.,
straightforwardly replace the convolutional layers by more complex layer such as Convolutional Block Attention
Module [33]) to obtain better performance at the cost of more expensive computation.

7 EVALUATION

7.1 Experimental Setup
We build StruGesture on a Samsung S5 mobile phone with Android 7.0 OS which is equipped with two

microphones and two speakers. Our prototype uses one built-in speaker and two built-in microphones to transmit
and receive the ultrasonic signals at a sample rate of 48 kHz. The received sound signal is sent to PC thorough
Wi-Fi for further processing including demodulation, structure-borne separation and classification. The device
used in our experiments is shown in Figure 12. All samples are collected under the normal scenario, in which
user uses the index finger to slide at the central area of the phone’s back with the normal force strength in the
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Fig. 16. Confusion matrix of two situations

silent environment. The proposed deep learning model is trained on dual NVIDIA GeForce GTX 1080 Ti GPUs
with 11 GB of GDDR5 memory.

Next, we report the hyper-parameter settings in detail. In the signal decomposition, the input signals have the
shape [𝑀 = 126, 𝑁 = 38], the convolutional layer has 4 filers with size [5, 5] and [2, 2] strides. The following
max-pooling has [2, 2] window with [2, 2] strides. In each de/convolutional layer, the activation function is ReLU
and the padding method is ’SAME’. The deconvolutional layer has 1 filter and the other setting is the same.
The gesture- and user-specific classifiers have identical hyper-parameter setting: three convolutional layers

have 16, 64, 256 filters with [5, 5], [3, 3], [2, 2] sizes ([1, 1] strides), respectively. All the kernel sizes and strides of
the three pooling layers are [2, 2]. The two FC layers have 600 and 60 hidden neurons, respectively. The output
layers of gesture- and user-specific classifiers have 6 and 9 neurons, respectively. The detailed data shape can be
found in Figure 11.
For evaluation, we recruit 10 volunteers (3 females and 7 males) aged from 23 to 30 years old. All volunteers

are healthy graduate students and have no experience of gesture recognition. Before the experiment, we give a
brief 10-minute introduction to each volunteer, explaining the regulations in data collection. All volunteers are
asked to perform 10 gestures as shown in Figure 13 and repeat 100 times with index finger.

7.2 Recognition Accuracy
In this section, we focus on evaluating our approach over two situations, namely Person Semi-dependent

(PSD) and Person Dependent (PD), compared with traditional classification methods (i.e., Support Vector Machine
(SVM), Random Forest (RF), K-Nearest Neighbors (KNN), Convolution Neural Network (CNN)). In addition, the
key parameters of the baselines are listed here: Linear SVM (𝐶 = 1), RF (𝑛 = 50), KNN (𝑘 = 3). The configuration of
CNN baseline is the same as the gesture-specific component (introduced in Section 7.1). Person Semi-dependent
situation denotes that some of the volunteer’s data is seen in the training process and other unseen data will be
tested. Person-dependent situation denotes that we just train part of one volunteer’s dataset and then test his/her
other unseen data. For Person Semi-dependent and Person Dependent, the dataset is randomly split into the
training set (80%) and testing set (20%). Moreover, for PD, we only optimize the loss function 𝐿𝑔 which represents
the loss function of gesture-specific classifier, since there is only one subject which results in the failure of the
signal decomposition and user-specific classifier. All data here is collected under normal office environment
where there are people typewriting or talking around.

Figure 14 and 15 illustrate the comparison between our approach and other classifiers over 10 gestures and 2
situations. The results show that:

• The average recognition accuracy for PD, PSD situations are 98.9%, 99.5%, respectively.
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Fig. 17. Recognition accuracy under different parameters

• Our approach obviously outperforms all the baselines, including typical non-deep learning classifiers and
competitive deep learning models, over all gestures and all situations.

Particularly, we find that the accuracy of our approach has a further improvement from PD to PSD while other
methods have different levels of degradation. This is mainly because the increasing samples for PSD situation incur
the intra-user noises which are various with different habits of users. While traditional methods are susceptible
to these noises, our approach focus on combating them to improve the recognition accuracy. To have a closer
observation, the Confusion matrix (CM) of the dataset relative to the person who has the average performance
over 2 situations are reported in Figure 16.
To study the impact of parameters in terms of the classifier model, we examine the system performance by

tuning three important parameters, i.e., batch size, learning rate and epoch. Figure 17(a) shows the average
recognition accuracy with different batch size and learning rate. The overall average accuracy over all tested
samples are 98.4%, 98.6%, 99.1%, 99%, 99.5% for batch size of 50, 100, 250, 500, 1000, respectively. Similarly, for
the learning rate varying from 0.00001 to 0.001, StruGesture achieves average accuracies of 96.9%, 99.7%, 99.4%,
99.5%, 98.2%, respectively. Figure 17(b) shows that the training loss degrades gradually with the increasing epochs
and the degradation tends to converge after 200 epochs.

7.3 New Users Scenario
New users denote that the tested users does not appear in the training process. In this scenario, a total of 10

users participated in the evaluation. Each user performs 10 gestures, as shown in Figure 13, and 100 samples
were collected for each gesture. Each user alternately acts as the new user, and all samples of the other 9 users
are treated as a training set. Therefore, each of the 10 users will be tested once. Finally, the recognition accuracy
for each gesture is the average result of all tested users..

7.3.1 Overall Accuracy: As shown in Figure 18, StruGesture achieves the average recognition accuracy of
73.1% for 10 gestures (i.e., 0-shot). To further evaluate the performance under few-shot scenarios, in which only
few new user’s samples are trained together with previous training data, we put 10, 20, 30, 40, 50 samples into
training set. The results show that StruGesture achieves the average recognition accuracies of 87.5%, 92.6%,
94.9%, 95.6% and 96.8%, respectively. This implies that 20 additional trained samples for a new user is sufficient to
achieve the similar performance with the PSD situation.

7.3.2 User Numbers: We conduct extensive experiments to investigate the influence of subject amount on the
system’s performance. We evaluate our model over different number of users: the average recognition accuracy
for 2, 4, 6, 8, 10 users are 78%, 91.4%, 91.6%, 92%, 92.6%, respectively. We also present the Receiver operating
characteristic (ROC) curves in Figure 19. The larger Area Under Curve (AUC) indicates the higher recognition
accuracy. We observe that StruGesture achieves better performance with increasing number of users and the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 2, Article 82. Publication date: June 2021.



82:20 • Wang et al.

anti-clock
click

clockwise

double-click

right-wave

slide-down
slide-left

slide-rig
ht

slide-up
zig-zig

 Classes

0

50

100
 A

cc
ur

ac
y(

%
)

 0-shot
 10-shot

 20-shot
 30-shot

 40-shot
 50-shot

Fig. 18. Few-shot recognition results

performance tends to converge as the number of users is greater than 4. In this situation, we believe ten users are
sufficient to evaluate the system’s performance.

7.3.3 Layer Numbers: We further evaluate the effect of the number of decomposition layers. For simplification,
we regard a de/convolutional layer and the following pooling layer as one layer. For example, as shown in
Figure 11, the signal decomposition contains two layers (omit the combination layer as shown in Eq. 12): a
convolutional layer (Eq. 8-9) and a deconvolutional layer (Eq. 10-11). We conduct experiments to evaluate
the system performance while the signal decomposition has 2 (1 convolutional and 1 deconvolutional), 4 (2
convolutional and 2 deconvolutional), and 6 (3 convolutional and 3 deconvolutional) layers. All the hyper-
parameters keep the same with Section 7.1.
We observe that the larger number of layers will lead to performance degradation. In detail, the average

recognition accuracy for 2, 4, 6 layers are 92.6%, 88.5%, 88.8%, respectively. The ROC curve with the different
number of decomposition layers are shown in Figure 20. One possible reason is that more decomposition layers
will cause signal distribution distortions, and these distortions are difficult to be reconstructed in the following
deconvolutional layers. Thus, we decide to use 2 layers in signal decomposition component.

7.4 Usage Scenarios
To better evaluate the performance of our system, we recruit a new volunteer for each scenario to collect 100

samples for each gesture. If not specified, for each new volunteer, we put his/her 20 samples collected under the
normal scenario into the foregoing training set (i.e., the training set in Section 7.3). The remaining 80 samples
collected under respective scenario serve as the tested set (i.e., 20-shot scenario).

7.4.1 Force Strength: StruGesture is robust over various force strength over different sliding times. We examine
the impact of force strength on the gesture recognition with varied force strength applied on the back of mobile
phone. We ask the volunteer to slide on the back surface with high and low strength, respectively. Figure 21 shows
that StruGesture achieves the average recognition accuracies of 94.6% and 95.1% for the high and low strength,
respectively. This indicates that the normalization process can effectively eliminate the negative influence of the
force strength variance within different sliding times.

7.4.2 Finger Types: StruGesture is effectivewhen performing gestures using different types of fingers. Although
most gestures are performedwith the index finger, usersmay use other infrequently used fingers to slide sometimes.
To investigate the impact of different fingers, we ask the volunteer to perform gestures with the middle and
thumb finger, respectively. Figure 22 shows that StruGesture achieves average recognition accuracies of 91.1%
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Fig. 19. ROC curve with different number of users Fig. 20. ROC curve with different number of layers

and 95.4% for these two scenarios, which demonstrate the robustness of our system. This is mainly because the
sliding habits, including the sliding trace and speed, are stable for the same person despite different fingers.

7.4.3 Sliding Area: StruGesture keeps high recognition accuracy with different sliding areas. Besides the
central area of the phone, user usually slides in various areas. This implies that our system should tolerate the
sliding area diversity. We ask the volunteer to perform gestures in the upper and lower area, respectively. As
shown in Figure 23, our system achieves the average recognition accuracies of 96.3% and 97.1%, respectively. This
result verifies the structure-borne propagation model illustrated in section 3, which points out that the sliding
pattern is independent of sliding areas.

7.4.4 Close-in Disturbance: StruGesture is robust against the interference from the close-in hand movement.
In this scenario, while the user’s index finger slides on the back surface, the middle finger moves in the air
meanwhile. In this way, the close-in disturbance mainly comes from the palm and other fingers when performing
the gestures. To make a fair comparison between our system and the air-borne propagation based scheme, we
retrained the air-borne data extracted from the same hybrid CIR signals. Figure 24 shows that our system (90.9%)
achieves high improvement than the air-borne scheme (66.4%). This is owing to the fact that the structure-borne
propagation of ultrasound signals is immune to the obstruction in the air.

7.4.5 Sweaty&Gloved: StruGesture achieves the average recognition accuracies of 97% and 87.3% for the
sweaty and gloved finger, respectively. It’s annoying to the user when the finger is sweaty or wearing glove since
the touchscreen can’t respond well. To demonstrate the performance of our system, we instrument the volunteer
to perform all gestures with sweaty and gloved finger, respectively. Figure 25 shows that our system is robust to
the sweaty finger while the performance with glove degrades by nearly 10%. The accuracy drop is mainly due to
lack of the diversity from the naked finger to glove, which can be improved by involving few gloved samples in
training process.

7.4.6 Sound Interference: StruGesture is robust to background audible sound interference. It is a familiar usage
scenario that user is using StruGesture when there is background sound around (i.e., Out-sound) or there is self
playing sound such as music (i.e., In-sound). We use shortened form Out-sound and In-sound to denote these
two scenarios, respectively. To explore the performance under the scenarios above, we conduct two experiments
respectively. For Out-sound scenario, we put another phone 1𝑚 away to play music (around 70 dB). For In-sound
scenario, we add the sound signals to the passband signals before transmitting. Figure 26 shows that our system
achieves the average recognition accuracies of 92.6% and 84.4% for Out-sound and In-sound scenarios, respectively.
It indicates that the background sound has no influence on our system. This is mainly because the frequency of
audible sound is much lower than the ultrasound. In contrast, the accuracy of In-sound scenario has a drop of
more than 8% . This is due to the minor vibration incurred by self sound playing.
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Fig. 23. Accuracy with different areas
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Fig. 24. Accuracy with disturbance
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Fig. 26. Accuracy with playing music
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Fig. 27. Accuracy with different micro-
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Fig. 29. Accuracy with user walking

7.4.7 Microphone Numbers: Combining the data from twomicrophones is necessary in our system. To evaluate
the impact of microphone numbers, we extract the data corresponding to upper and lower microphones from
the mixed data used in Section 7.2. Then, we retrained and retested these two data using the same method
with 20-shot scenario. Figure 27 shows that the average recognition accuracies relative to the upper and lower
microphones are 84.4% and 75.9%, respectively. In comparison, the average accuracy is 92.6% with the dual input,
as shown in Figure 18. The performance drops since different gestures may have the similar pattern for the
same microphone. For example, sliding left and sliding right gestures are difficult to distinguish for the upper
microphone.
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Fig. 30. Accuracy for different de/modulation schemes
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Fig. 31. Accuracy for the ablation study

7.4.8 Phone Types: StruGesture works well for different types of mobile phones. We additionally perform
gesture recognition on Samsung Galaxy S7 and Nexus 6, respectively. Note that the collected data should be
retrained since the layout of microphones and speakers are diverse over different types of phones. Additionally,
the evaluation under this scenario is executed in the PD scenario. As shown in Figure 28, StruGesture achieves
the average recognition accuracies of 100% and 93.1% for S7 and Nexus 6, respectively. Despite that we find the
noise of Nexus 6 is considerably larger than S7, the recognition performance for Nexus 6 is good enough to meet
the application requirement.

7.4.9 User Walking: StruGesture has a slight degradation of the recognition accuracy when the user is walking.
To evaluate the walking performance, we train the PD model with the data when the user is in walking and
static states under the normal scenario. All testing data comes from the walking state. As shown in Figure 29,
StruGesture achieves an average recognition accuracy of 91.1% for the walking state, which is lower than 98.9%
illustrated in Section 7.2. It is mainly due to the violent shaking of the hand when the user is on the move.
Additionally, we combine the data under the static and walking states to study the data compatibility. The static
state data serves as the training data, and the data in the walking state serves as the testing data. Figure 29 shows
that StruGesture achieves an average recognition accuracy of 76.5%, which is not enough for everyday use.

7.4.10 De/modulation Schemes: Our results show that our de/modulation schemes are superior to other
typical schemes. To make a fair comparison, all signals only differ in modulation and demodulation schemes. We
use the PD model to train and test the collecting data under the normal scenario. As shown in Figure 30, the
average recognition accuracies for StruGesture, VSkin, OFDM, FMCW are 95.7%, 94.5%, 82.7%, 82.1%, respectively.
Our de/modulation scheme’s performance is much better than that of traditional modulation schemes (i.e., OFDM,
FMCW). Although our scheme’s performance is similar to VSkin, the time consumption of our scheme is only
one fifth of that of VSkin, as illustrated in Table 1.

7.4.11 Ablation Study: Structure-borne component extracting and purifying are both essential to our system.
We use the same collecting data under the “Close-in Disturbance” scenario to evaluate the system performance
without signal extracting (abbreviated as W/O Extracting) and purifying (abbreviated as W/O Purifying), re-
spectively. Figure 31 shows that the system’s recognition accuracies are 70.1%, 89.2% for W/O Extracting, W/O
Purifying, respectively. It means that the system’s recognition accuracy without signal extracting degrades
by 20.1% compared with StruGesture. This is because the critical advantage of signal extracting is to reduce
air-borne interference. Additionally, the system without signal purifying has a slight degradation compared with
the original system. This is mainly because the static component of the structure-bore signals may be slightly
different when the user holds the phone at different times. The purifying operation can thus improve the system
performance by removing the effect of the static signals.
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7.4.12 Unknown Input: In the real-world deployment, it is important to have the ability to detect the unknown
input (i.e., the gestures not included in training set). To address this issue, we examine the predicted probability
(after the softmax activation function) in the last layer of gesture-specific classifier. The output layer contains 10
positive scores (as we have 10 gestures) representing the probability that the input sample fall into each of the 10
gestures. If the highest probability is lower than a predefined threshold, our model regards the input sample is
not similar to any of the 10 gestures and recognize it as unknown gesture. Our hypothesis is that if the input
gesture never appears in the training phase, its pattern will not match with any training gestures (i.e., the 10
gestures appeared in training stage) and its probability is small in all categories.

We conduct extensive experiments to evaluate the ability of our model detecting the unknown input. We train
our model by 10 gestures, then we feed 200 unseen samples (from 2 gestures, 100 samples writing number ‘3’
while 100 samples writing number ‘9’) into well-trained model for recognition. We provide density of the highest
predicted probability of known gestures (the 10 gestures appeared in training) and unknown gestures (the 2
unseen gestures) and observe a different distribution (Figure 32). This demonstrates our previous hypothesis is
meaningful.

By setting the threshold as 0.18, StruGesture can correctly recognize 141 out of 200 unknown input, claiming
an accuracy of 70.5%, demonstrating that our system is highly robust and able to screen the unknown gesture. As
a price, the recognition accuracy of known gestures has a slight drop from 92.6% to 91.9%.

8 LIMITATIONS AND DISCUSSION
StruGesture proves the feasibility of using structure-borne propagation to recognize sliding gestures with high

accuracy. However, StruGesture has some limitations in the current form of implementation. Firstly, the gesture
waving speed should be in the normal range, which can not be too fast or slow. Too fast motion will incur the
doppler effect, which impacts the baseband signals and the subsequent structure-borne measurement. Besides,
the gesture pattern with too slow motion is deviated from the overall pattern severely, which may disable our
classifier. We leave the performance study with wide range of waving speed as future work. Secondly, although
different mobile phones have the similar layout, the distance between the speaker and microphones may be
slightly different. To enable StruGesture, we need to retrain the collected data for each type of phone, which
reduces universality and incurs the computation overhead. Thirdly, the classification process is realized offline
currently. In the future, we will consider embedding the training model generated by the server into the mobile
phones to enable the realtime recognition. Furthermore, although our model (i.e., the gesture-specfic classifier)
achieves recognition performance of above 90% in most scenarios, the user-specific classifier has a lower user
recognition accuracy (62.4%). This is acceptable as user identification is not a main task of this work. In fact, the
difference among distinct gestures are obviously greater than the difference among various users, because the
former is caused by gesture trajectories and the latter are mainly caused by the velocity. One future research
scope of our research is to increase user recognition’s ability, thus enabling StruGesture’s capacity in privacy and
security.
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9 CONCLUSION
In this paper, we make the following three key contributions. Firstly, we propose the structure-borne propaga-

tion model on the back of mobile phone, which builds the correlation between the structure-borne path change
and the sliding gestures. Secondly, we propose a systematic approach to extract the structure-borne component.
Thirdly, we develop a new deep learning algorithm to learn the gesture-specific representation for recognition.
Our results show that StruGesture achieves an average classification accuracy of 99.5%.
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